Telegram Group & Telegram Channel
๐Ÿ’  Compositional Learning Journal Club

Join us this week for an in-depth discussion on Compositional Learning in the context of cutting-edge text-to-image generative models. We will explore recent breakthroughs and challenges, focusing on how these models handle compositional tasks and where improvements can be made.

โœ… This Week's Presentation:

๐Ÿ”น Title: Object-Attribute Binding in Text-to-Image Generation: Evaluation and Control

๐Ÿ”ธ Presenter: Arshia Hemmat

๐ŸŒ€ Abstract:
This presentation introduces advancements in addressing compositional challenges in text-to-image (T2I) generation models. Current diffusion models often struggle to associate attributes accurately with the intended objects based on text prompts. To address this, a new Edge Prediction Vision Transformer (EPViT) is introduced for improved image-text alignment evaluation. Additionally, the proposed Focused Cross-Attention (FCA) mechanism uses syntactic constraints from input sentences to enhance visual attention maps. DisCLIP embeddings further disentangle multimodal embeddings, improving attribute-object alignment. These innovations integrate seamlessly into state-of-the-art diffusion models, enhancing T2I generation quality without additional model training.

๐Ÿ“„ Paper: Object-Attribute Binding in Text-to-Image Generation: Evaluation and Control


Session Details:
- ๐Ÿ“… Date: Sunday
- ๐Ÿ•’ Time: 5:00 - 6:00 PM
- ๐ŸŒ Location: Online at vc.sharif.edu/ch/rohban


We look forward to your participation! โœŒ๏ธ



tg-me.com/RIMLLab/144
Create:
Last Update:

๐Ÿ’  Compositional Learning Journal Club

Join us this week for an in-depth discussion on Compositional Learning in the context of cutting-edge text-to-image generative models. We will explore recent breakthroughs and challenges, focusing on how these models handle compositional tasks and where improvements can be made.

โœ… This Week's Presentation:

๐Ÿ”น Title: Object-Attribute Binding in Text-to-Image Generation: Evaluation and Control

๐Ÿ”ธ Presenter: Arshia Hemmat

๐ŸŒ€ Abstract:
This presentation introduces advancements in addressing compositional challenges in text-to-image (T2I) generation models. Current diffusion models often struggle to associate attributes accurately with the intended objects based on text prompts. To address this, a new Edge Prediction Vision Transformer (EPViT) is introduced for improved image-text alignment evaluation. Additionally, the proposed Focused Cross-Attention (FCA) mechanism uses syntactic constraints from input sentences to enhance visual attention maps. DisCLIP embeddings further disentangle multimodal embeddings, improving attribute-object alignment. These innovations integrate seamlessly into state-of-the-art diffusion models, enhancing T2I generation quality without additional model training.

๐Ÿ“„ Paper: Object-Attribute Binding in Text-to-Image Generation: Evaluation and Control


Session Details:
- ๐Ÿ“… Date: Sunday
- ๐Ÿ•’ Time: 5:00 - 6:00 PM
- ๐ŸŒ Location: Online at vc.sharif.edu/ch/rohban


We look forward to your participation! โœŒ๏ธ

BY RIML Lab




Share with your friend now:
tg-me.com/RIMLLab/144

View MORE
Open in Telegram


RIML Lab Telegram | DID YOU KNOW?

Date: |

Telegram Auto-Delete Messages in Any Chat

Some messages arenโ€™t supposed to last forever. There are some Telegram groups and conversations where itโ€™s best if messages are automatically deleted in a day or a week. Hereโ€™s how to auto-delete messages in any Telegram chat. You can enable the auto-delete feature on a per-chat basis. It works for both one-on-one conversations and group chats. Previously, you needed to use the Secret Chat feature to automatically delete messages after a set time. At the time of writing, you can choose to automatically delete messages after a day or a week. Telegram starts the timer once they are sent, not after they are read. This wonโ€™t affect the messages that were sent before enabling the feature.

The Singapore stock market has alternated between positive and negative finishes through the last five trading days since the end of the two-day winning streak in which it had added more than a dozen points or 0.4 percent. The Straits Times Index now sits just above the 3,060-point plateau and it's likely to see a narrow trading range on Monday.

RIML Lab from tw


Telegram RIML Lab
FROM USA